Chemistry of 2*H*-Azaphosphirene Complexes, 10^[♦]

Syntheses of 3-Heteroaryl-2*H*-Azaphosphirene Tungsten Complexes[☆]

Rainer Streubel*a, Siegfried Priemera, Frank Ruthea, Peter G. Jonesa, and Dietrich Gudatb

Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig^a,

Postfach 3329, D-38023, Braunschweig, Germany

Fax: (internat.) +49 (0)531/391-5387

E-mail: r.streubel@tu-bs.de

Institut für Anorganische Chemie der Universität Bonn^b, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany

Fax: (internat.) +49 (0)228/73-5327 E-mail: dgudat@uni-bonn.de

Received December 1, 1997

Keywords: Phosphorus heterocycles / 2H-Azaphosphirene complexes / Carbene complexes / Tungsten / Cyclizations

The syntheses of 3-heteroaryl-substituted 2H-azaphosphirene pentacarbonyltungsten complexes are reported. The products were characterized by multinuclear NMR spectro-

scopy (1 H, 13 C, 15 N, 31 P, 183 W); the structure of the 3-N-methylpyrryl-substituted 2 H-azaphosphirene complex was determined by single-crystal X-ray structure analysis.

2*H*-azaphosphirene tungsten complexes (**I**) are of current synthetic interest because of their widespread applicability in heterocycle synthesis. For example, we very recently demonstrated that 2*H*-azaphosphirene tungsten complexes provide a new access to five-membered heterocyclic complexes, through trapping reactions of transiently formed nitrilium phosphane ylide tungsten complexes (**II**) with an acetylene^[2] and a nitrile derivative.^[3] Therefore, we were interested in the synthesis of 3-heteroaryl-substituted 2*H*-azaphosphirene tungsten complexes. We also wished to test the limits of our initial synthetic approach^[4] to 2*H*-azaphosphirene complexes.

Scheme 1. 2*H*-azaphosphirene tungsten complexes (I) and nitrilium phosphane ylide tungsten complexes (II) (I, II: R, R' = alkyl, aryl; [M] = metal complex fragment)

$$[M] \longrightarrow PR' \qquad \bigoplus \qquad \bigoplus \qquad \bigoplus \qquad \bigoplus \qquad MC \Longrightarrow N \longrightarrow P(R') \longrightarrow [M]$$

$$I \qquad \qquad II$$

Heteroaryl-substituted aminocarbene tungsten complexes $1\mathbf{a} - \mathbf{c}$ were synthesized according to standard procedures [5] and reacted with [bis(trimethylsilyl)methylene]-chlorophosphane (2)[6] in the presence of triethylamine. In a similar way to our previously reported reactions of aryl-substituted aminocarbene complexes, [1][7] these reactions proceeded smoothly to give the 2H-azaphosphirene tungsten complexes $3\mathbf{a} - \mathbf{c}$ (Scheme 2). These compounds were

Scheme 2. Synthesis of 2*H*-azaphosphirene tungsten complexes 3a-c

$$1a-d \qquad \qquad 2$$

$$+ NEt_3 - [Et_3NH]Cl$$

$$(Me_3Si)_2HC \qquad W(CO)_5$$

$$X \qquad C = N$$

$$3a-d$$

1a,3a: X = NMe; 1b,3b: X = O; 1c,3c: X = S; 1d,3d: HC=CH

The proposed structures of the 2H-azaphosphirene tungsten complexes $3\mathbf{a} - \mathbf{c}$ are unambiguously confirmed by their typical NMR data. The assignment of the 1H - and ^{13}C -NMR resonances of the aromatic substituents in $3\mathbf{a} - \mathbf{c}$ is based on a comparison with the corresponding data of 2-formyl-substituted heteroarenes.^[8] The chemical shift of the

isolated in moderate to good yields after low-temperature column chromatography.

^[©] Part 9: See ref.[7].

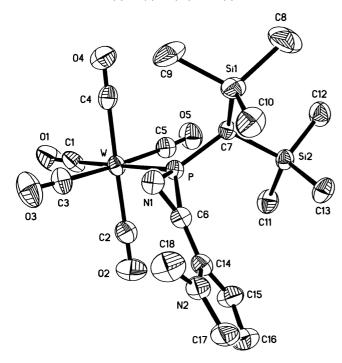

pyrryl nitrogen atom in 3a compares to reported values of N-alkyl pyrroles.^[9] The chemical shifts of the atoms in the three membered rings of 3b,c match those of the phenyl substituted derivative, 3d, [1] while for the N-methylpyrrylsubstituted compound, 3a, both the ³¹P and ¹⁵N resonances display marked shifts to higher field (Table 1). The origin of this phenomenon arises presumably from π -interactions between the five- and three-membered rings and is in accord with the higher π -donor capability of a pyrryl as compared to a thienyl or phenyl substituent. The magnitudes of the carbon-phosphorus coupling constants in 3a-c $[^{(1+2)}J_{PC} = 4.0-8.2 \text{ Hz}]$ are larger than in **3d** and related para-substituted derivatives (1-3 Hz, ref.^[7]) and increase in the same order (3c < 3b < 3a) as $[^{(1+2)}J_{PN}]$. The values of δ^{183} W and ${}^{1}J_{\text{WP}}$ for $3\mathbf{a}-\mathbf{c}$ are essentially constant and lie in the known range for complexes of the type [W(CO)₅(PR₃)].^[10] CI EI mass spectrometric experiments revealed that, although only the $[(M + H)^+]$ and not the

Table 1. Comparison of selected $^{13}C^{[a]}$, $^{15}N^{[b]}$, $^{31}P^{[b]}$, $^{183}W^{[b]}$ NMR data (δ values, J[Hz]) of 3-heteroaryl-2H-azaphosphirene tungsten complexes $3\mathbf{a}-\mathbf{c}$, $\mathbf{d}^{[7]}$ (exclusively atoms of the three-membered ring and tungsten)

	δ ³¹ P	$^1J_{ m W,P}$	δ ¹³ C	$^{(1+2)}J_{\rm C,P}$	δ ^{15}N	$^{(1+2)}J_{\rm N,P}$	δ ¹⁸³ W
3a	-127.9	294	179.2	8.2	-85.3	40.1	3249.8
3b	-108.3	298	181.7	7.0	-60.7	39.7	3252.5
3c	-103.0	296	185.0	4.0	-62.6	38.7	3255.3
3d	-108.8	294	192.3	1.3	-53.9	36.7	3255.9

[[]a] CDCl₃, room. temp. - [b] CH₂Cl₂, room. temp.

Figure 1. Molecular structure of $\bf 3a$ in the crystal (ellipsoids represent 50% probability levels, hydrogen atoms are omitted for clarity). Selected bond lengths [A] and angles [°]: P-C(6) 1.760(4), P-N(1) 1.789(3), N(1)-C(6) 1.296(5), W-P 2.4741(13); C(6)-P-N(1) 42.8(2), C(6)-N(1)-P 67.4(2), N(1)-C(6)-P 69.8(2), N(1)-C(6)-C(14) 138.0(4).

[(M – H)⁻] ions were detected, these 2*H*-azaphosphirene complexes preferentially show PCN-ring cleavage subsequent to the ionisation processes; this was observed in the positive and negative CI mode. Additionally, the resulting fragment ions indicate subsequent loss of carbon monoxide.

The molecular structure of complex **3a** was confirmed for the solid state by X-ray crystallography (Figure 1). [11] One of the most interesting structural features of **3a** is the almost coplanar arrangement of the two ring systems (interplanar angle 6.4°) which allows an effective π -electron interaction between the *N*-methylpyrryl group (π -donor) and the PCN-ring (π -acceptor). This is strongly supported by the observed bond length equalization of the carbon–carbon bonds in the pyrryl ring [C14–C15 1.389(5), C15–C16 1.385(6), C16–C17 1.396(6) Å] and the interring bond [C6–C14 1.404(5) Å]. The latter is also significantly shorter than the corresponding distance in **3d** [1.457(7) Å]^[7], while at the same time the C–N double bond [N1–C6 1.296(5) Å] is longer than there [1.272(7) Å^[7]].

Support by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged.

Experimental Section

General: All operations were carried out under deoxygenated dry nitrogen as inert gas, solvents were dried according to standard procedures. — NMR spectra were recorded on a Bruker AC-200 or a Bruker AMX-300 spectrometer (AC-200: 200 MHz for ¹H; 50.3 MHz for ¹³C; 81 MHz for ³¹P; AMX-300: 30.4 MHz for ¹⁵N; 12.5 MHz for ¹⁸³W) using [D]chloroform and dichloromethane as solvent and internal standard; shifts are given relative to ext. tetramethylsilane (¹H, ¹³C), H₃CNO₂ (¹⁵N), 85% H₃PO₄ (³¹P) and WO₄²⁻ (¹⁸³W). ¹⁵N-NMR spectra were recorded using ³¹P- and ¹H-based polarisation transfer techniques (INEPT); ¹⁸³W-NMR data were obtained from two dimensional ³¹P-detected ³¹P, ¹⁸³W{¹H} HMQC spectra. — MS: Finigan Mat 8430 (70 eV). — Elemental analyses: Carlo Erba analytical gas chromatograph. — IR: Biorad FT-IR-165.

General Procedure for the Preparation of Amino-(heteroaryl)carbene Tungsten Complexes: The ethoxy(heteroaryl)carbene tungsten complexes were prepared according to ref.^[5] and reacted, without purification, with ammonia. A gentle flow of ammonia was bubbled through a solution of 5 mmol of the ethoxy-(heteroaryl)carbene tungsten complexes in 60 ml of ether until a yellow colour persisted and thin layer chromatography (SiO₂) indicated that all starting material had reacted. All volatile compounds were removed under reduced pressure (0.1 mbar) and the yellow residue was purified by column chromatography. The assignment of the ¹H and ¹³C resonances of the aromatic heterocyclic substituents of 1a-c accords with related chromium complexes. [12]

{[Amino(1-methyl-2-pyrryl) carbene]pentacarbonyltungsten(0)} (1a): 1.7 g of 1a (79%) was obtained as a yellow powder after low temperature chromatography (SiO₂, -10° C; hexane/ether 1:1). M.p. 120°C (decomp.). – IR (KBr): $\tilde{v} = 3451$ (m) cm⁻¹, 3351 (m), 3256 (m), (NH), 2061 (m), 1978 (m), 1903 (s), (CO). – ¹H NMR (CDCl₃): $\delta = 3.80$ (s, 3 H, N–C H_3), 6.22 (dd, $^3J_{HH} = 4.0$ Hz, $^3J_{HH} = 2.6$ Hz, 1 H, pyrryl-C4- 4H), 6.85–6.91 (m, 2 H, pyrryl-C3/5- 4H), 8.07 (br, 2 H, N 4H 2). – 13 C{ 4H 3 NMR (CDCl₃): $\delta = 37.1$ (s, N–C 4H 3), 110.3 (s, pyrryl-C4), 123.7 (s, pyrryl-C5), 132.0 (s, pyrryl-C3), 143.6 (s, pyrryl-C2), 198.9 (s, $^4H_{CW} = 127.6$ Hz, cis-CO), 202.9

(s, trans-CO), 240.6 (s, W=CR₂). – MS (70 eV), (¹⁸⁴W) m/z (%): 432 (8) [M⁺], 404 (11) [M⁺ – CO], 352 (53) [M⁺ – C₅H₆N], 296 (40) [M⁺ – 2 × CO – C₅H₆N], 268 (100) [M⁺ – 3 × CO – C₅H₆N], 240 (41) [M⁺ – 4 × CO – C₅H₆N], 212 (43) [M⁺ – 5 × CO – C₅H₆N], 184 (33) [M⁺ – 5 × CO – C₅H₆N – CNH₂]. – C₁₁H₈N₂O₅W (432.0): calcd. C 30.58, H 1.87, N 6.48; found C 30.67, H 1.90, N 6.48.

{[Amino(2-furyl)carbene]pentacarbonyltungsten(0)} (1b): 1.5 g of 1b (71%) was obtained as a yellow-orange powder after low temperature chromatography (SiO₂, -10°C; hexane/ether 1:1). M.p. 95°C (decomp.). – IR (KBr): $\tilde{v} = 3457$ (m) cm⁻¹, 3341 (m), 3256 (m), (NH), 2064 (m), 1976 (m), 1928 (s), 1888 (s), (CO). - 1H NMR (CDCl₃): $\delta = 6.56$ (dd, ${}^{3}J_{HH} = 3.7$ Hz, ${}^{3}J_{HH} = 1.8$ Hz, 1 H, furyl-C4-H), 7.45-7.47 (m, 1 H, furyl-C3-H), 7.54-7.55 (m, 1 H, furyl-C5-H), 7.91 (br, 1 H, NH_2), 8.94 (br, 1 H, NH_2). – ¹³C{¹H} NMR (CDCl₃): $\delta = 114.5$ (s, furyl-*C4*), 129.4 (s, furyl-C3), 145.6 (s, furyl-C5), 159.0 (s, furyl-C2), 198.4 (s, ${}^{1}J_{CW} = 129.9$ Hz, cis-CO), 202.6 (s, trans-CO), 229.8 (s, $W = CR_2$). – MS (70 eV), $(^{184}\text{W}); m/z \ (\%): 419 \ (56) \ [\text{M}^+], 391 \ (18) \ [\text{M}^+ - \text{CO}], 335 \ (55) \ [\text{M}^+]$ $-3 \times \text{CO}$, 307 (51) [M⁺ $-4 \times \text{CO}$], 279 (100) [M⁺ $-5 \times \text{CO}$], 252 (56) [M+ - 3 \times CO - NH $_2$ - C $_4$ H $_3$ O], 224 (35) [M+ - 4 \times $CO - NH_2 - C_4H_3O$]. $- C_{10}H_5NO_6W$ (419.0): calcd. C 28.67, H 1.20, N 3.34; found C 28.73, H 1.21, N 3.32.

 $\{[Amino(2-thienyl) carbene] pentacarbonyltungsten(0)\}$ (1c): 1.8 g of 1c (84%) was obtained as a yellow powder after low temperature chromatography (SiO₂, -10°C; hexane/ether 1:1). M.p. 101°C (decomp.). – IR (KBr): $\tilde{v} = 3426$ (m) cm⁻¹, 3343 (m), 3266 (m), (NH), 2064 (m), 1969 (m), 1922 (vs), 1911 (vs), 1888 (s), 1872 (vs), (CO). $- {}^{1}\text{H NMR (CDCl}_{3})$: $\delta = 7.16 \text{ (dd, } {}^{3}J_{HH} = 5.0 \text{ Hz, } {}^{3}J_{HH} =$ 3.9 Hz, 1 H, thienyl-C4-H), 7.60 (dd, ${}^{3}J_{HH} = 3.9$ Hz, ${}^{4}J_{HH} = 1.1$ Hz, 1 H, thienyl-C3-H), 7.66 (dd, ${}^{3}J_{HH} = 5.0$ Hz, ${}^{4}J_{HH} = 1.1$ Hz, 1 H, thienyl-C5-H), 8.02 (br, 1 H, NH₂), 8.52 (br, 1 H, NH₂). – ¹³C{¹H} NMR (CDCl₃): $\delta = 129.0$ (s, thienyl-C4), 132.7 (s) and 133.2 (s) (thienyl-C3/C5), 153.5 (s, thienyl-C2), 198.4 (s, ${}^{1}J_{CW} =$ 127.2 Hz, cis-CO), 202.6 (s, trans-CO), 243.8 (s, $W = CR_2$). – MS (70 eV), (184 W); m/z (%): 435 (49) [M⁺], 407 (30) [M⁺ - CO], 351 (28) $[M^+ - 3 \times CO]$, 295 (100) $[M^+ - 5 \times CO]$, 268 (41) $[M^+ - 5 \times CO]$ $3 \times CO - C_4H_3S$]. - $C_{10}H_5NO_5SW$ (435.1): calcd. C 27.61, H 1.16, N 3.22, S 7.37; found C 27.68, H 1.16, N 3.15, S 7.40.

General Procedure for the Preparation of 2H-Azaphosphirene-(pentacarbonyl) tungsten Complexes: To a solution of 1.5 mmol of amino(heteroaryl)carbene tungsten complexes 1a-c in 15 ml of ether was added 0.34 g (1.5 mmol) of 2 and 5 ml of NEt₃ at 0°C. The reaction mixture was stirred at ambient temp. until 2 was consumed (3¹P-NMR control). The yellow-orange reaction mixture was evaporated to dryness under reduced pressure (0.1 mbar). The residue was extracted with 30 ml of pentane and filtered. The filtration residue was washed twice with 5 ml of pentane, the organic phases combined and the solvent removed under reduced pressure. The residue was purified, if necessary, by low temperature column chromatography (SiO₂, -10°C; hexane/ether 10:1).

{[2-Bis(trimethylsilyl)methyl-3-(1-methyl-2-pyrryl)-2H-azaphosphirene-κP]pentacarbo-nyltungsten(0)} (3a): 0.35 g of 3a (56%) was obtained, after stirring for 20 hours, as a yellow powder. M.p. 112 °C (decomp.). – IR (KBr): $\tilde{\mathbf{v}}=2073$ (m) cm $^{-1}$, 1990 (m), 1952 (s, sh), 1936 (s), 1919 (vs), (CO), 1618 (w) (CN). – 1 H NMR (CDCl₃): δ = 0.14 (s, 9 H, SiMe₃), 0.28 (s, 9 H, SiMe₃), 0.58 (d, $^{2}J_{\rm HP}=2.9$ Hz, 1 H, PCH), 4.01 (d, $^{4}J_{\rm HH}=0.5$ Hz, 3 H, N–CH₃), 6.37 (dd, $^{3}J_{\rm HH}=4.1$ Hz, $^{3}J_{\rm HH}=2.5$ Hz, 1 H, pyrryl-C4-H), 7.04–7.06 (m, 1 H, pyrryl-C3-H), 7.10 (m, 1 H, pyrryl-C5-H). – 13 C{\$^{1}H} NMR (CDCl₃): δ = 1.3 (d, $^{3}J_{\rm CP}=3.5$ Hz, SiMe₃), 2.2 (d, $^{3}J_{\rm CP}=3.1$ Hz, SiMe₃), 27.2 (d, $^{1}J_{\rm CP}=24.2$ Hz, PCH), 36.2 (s,

N-CH₃), 111.0 (s, pyrryl-C4), 120.2 (d, $^2J_{CP} = 19.2$ Hz, pyrryl-C2), 122.3 (s, pyrryl-C3), 132.6 (s, pyrryl-C5), 179.2 (d, $^{(1+2)}J_{PC} = 8.2$ Hz, PCN), 196.0 (d, $^2J_{CP} = 8.9$ Hz, cis-CO), 198.1 (d, $^2J_{CP} = 35.6$ Hz, trans-CO). $^{-15}$ N NMR (CH₂Cl₂): $\delta = -85.3$ (d, $^{(1+2)}J_{NP} = 40.1$ Hz, PCN), $^{-224.3}$ (d, $^3J_{NP} = 1.4$ Hz, pyrryl-N). $^{-31}$ P{ 1 H} NMR (CDCl₃): $\delta = ^{-125.8}$ (s, $^1J_{PW} = 293.1$ Hz). $^{-31}$ P{ 1 H} NMR (CH₂Cl₂): $\delta = ^{-127.9}$ (s, $^1J_{PW} = 294.0$ Hz). $^{-183}$ W NMR (CH₂Cl₂): $\delta = ^{-3249.8}$ (d, $^1J_{PW} = 294.0$ Hz). $^{-183}$ W NMR (CH₂Cl₂): $\delta = ^{-3249.8}$ (d, $^1J_{PW} = 294.0$ Hz). $^{-183}$ W NMR (CH₂Cl₂): $\delta = ^{-3249.8}$ (d, $^1J_{PW} = 294.0$ Hz). $^{-183}$ W (pos.-CI, NH₃), (184 W) $^{-184}$ W) ($^{-184}$ W) (

 $\{ \textit{[2-Bis(trimethylsilyl)} methyl-\textit{3-(2-furyl)-2} H-\textit{azaphosphirene-} \kappa P \textit{]} - \text{P-$} \}$ pentacarbonyltungsten(0) $\}$ (3b): 0.35 g of 3b (58%) was obtained, after stirring for 25 hours, as a yellow powder. M.p. 106°C (decomp.). – IR (KBr): $\tilde{v} = 2074$ (s) cm⁻¹, 1991 (m), 1965 (s), 1945 (vs), 1935 (s), 1923 (vs), 1907 (vs) (CO), 1636 (w) (CN). - ¹H NMR (CDCl₃): $\delta = 0.14$ (s, 9 H, SiMe₃), 0.28 (s, 9 H, SiMe₃), 0.65 (d, ${}^{2}J_{HP} = 3.8 \text{ Hz}$, 1 H, PCH), 6.74 (dd, ${}^{3}J_{HH} = 3.5 \text{ Hz}$, ${}^{3}J_{HH} =$ 1.8 Hz, 1 H, furyl-C4-H), 7.42 (d, ${}^{3}J_{HH} = 3.5$ Hz, 1 H, furyl-C3-H), 7.88 (d, ${}^{3}J_{HH} = 1.8 \text{ Hz}$, 1 H, furyl-C5-H). $- {}^{13}C\{{}^{1}H\}$ NMR (CDCl₃): $\delta = 1.0$ (d, ${}^{3}J_{CP} = 3.4$ Hz, SiMe₃), 2.0 (d, ${}^{3}J_{CP} = 3.2$ Hz, SiMe₃), 28.0 (d, ${}^{1}J_{CP} = 23.6$ Hz, PCH), 113.6 (s, furyl-C3), 120.6 (s, furyl-C4), 143.3 (d, ${}^2J_{\rm CP}=17.1$ Hz, furyl-C2), 149.2 (s, furyl-C5), 181.7 (d, $^{(1+2)}J_{CP} = 7.0 \text{ Hz}$, PCN), 195.6 (d, $^2J_{CP} = 8.9 \text{ Hz}$, cis-CO), 197.6 (d, $^2J_{\rm CP} = 37.0$ Hz, trans-CO). $-\ ^{15}{\rm N}$ NMR (CH_2Cl_2) : $\delta = -60.7$ (d, $^{(1+2)}J_{NP} = 39.7$ Hz). $-^{31}P\{^1H\}$ NMR (CDCl₃): $\delta = -105.4$ (s, ${}^{1}J_{PW} = 297.9$ Hz). $- {}^{31}P\{{}^{1}H\}$ NMR (CH₂Cl₂): $\delta = -108.3$ (s, ${}^{1}J_{PW} = 298.0$ Hz). $-{}^{183}W$ NMR (CH_2Cl_2) : $\delta = -3252.5$ (d, ${}^1J_{PW} = 298.0$ Hz). – MS (pos.-CI, NH₃), (184 W); m/z (%): 608 (100) [(M + H)⁺], 515 (4) [(M + H)⁺ - C₅H₃NO]. MS (neg.-CI, NH₃), (¹⁸⁴W); m/z (%): 513 (100)[(M $- H)^{-} - C_5H_3NO$], 485 (8) [(M - H)⁻ - C₅H₃NO - CO]. -C₁₇H₂₂NO₆PSi₂W (607.4): calcd. C 33.56, H 3.64, N 2.30; found C 33.78, H 3.55, N 2.28.

{[2-Bis(trimethylsilyl)methyl-3-(2-thienyl)-2H-azaphosphirene- κP [-pentacarbonyltungsten(0)] (3c): 0.35 g of 3c (56%) was obtained, after stirring for 22 hours, as a yellow powder. M.p. 110°C (decomp.). – IR (KBr): $\tilde{v} = 2072$ (s) cm⁻¹, 1988 (m), 1963 (s), 1936 (vs, br), 1920 (vs), (CO), 1612 (w) (CN). - 1H NMR (CDCl₃): $\delta = 0.15$ (s, 9 H, SiMe₃), 0.29 (s, 9 H, SiMe₃), 0.70 (d, ${}^{2}J_{HP} = 3.3$ Hz, 1 H, PCH), 7.34 (dd, ${}^{3}J_{HH} = 4.9$ Hz, ${}^{4}J_{HH} = 3.8$ Hz, 1 H, thienyl-C4-H), 7.87-7.94 (m, 2 H, thienyl-C3/5-H). - 13 C{ 1 H} NMR (CDCl₃): $\delta = 1.3$ (d, ${}^{3}J_{CP} = 3.5$ Hz, SiMe₃), 2.1 (d, ${}^{3}J_{CP} =$ 3.3 Hz, SiMe₃), 28.2 (d, ${}^{1}J_{CP} = 24.3$ Hz, PCH), 129.2 (s, thienyl-C5), 130.0 (d, ${}^{2}J_{CP} = 17.9$ Hz, thienyl-C2), 134.9 (s) and 135.7 (s), thienyl-C3/C4, 185.0 (d, $^{(1+2)}J_{PC} = 4.0$ Hz, PCN), 195.7 (d, $^2J_{CP} =$ 8.9 Hz, cis-CO), 197.7 (d, ${}^{2}J_{CP} = 36.7$ Hz, trans-CO). $- {}^{15}N$ NMR (CH₂Cl₂): $\delta = -62.6$ (d, $^{(1+2)}J_{PN} = 38.7$ Hz). $- ^{31}P\{^{1}H\}$ NMR (CDCl₃): $\delta = -100.8$ (s, ${}^{1}J_{PW} = 296.3$ Hz). $- {}^{31}P\{{}^{1}H\}$ NMR (CH_2Cl_2) : $\delta = -103.0$ (s, ${}^1J_{PW} = 296.0$ Hz). $- {}^{183}W$ NMR (CH_2Cl_2) : $\delta = -3255.3$ (d, ${}^{1}J_{PW} = 296.3$ Hz). – MS (pos.-CI, NH₃), (184 W) m/z (%): 624 (50) [(M + H)⁺], 515 (15) [(M + H)⁺ H)⁺]. – MS (neg.-CI, NH₃), (184 W) m/z (%): 513 (100) [(M – H)⁻ C_5H_3NS], 485 (44) [(M - H)⁻ - C_5H_3NS - CO]. -C₁₇H₂₂NO₅PSSi₂W (623.4): calcd. C 32.75, H 3.56, N 2.25, S 5.14; found C 32.82, H 3.61, N 2.11, S 5.17.

Crystal Structure Determination of $3a^{[11]}$: $C_{18}H_{25}N_2O_5PSi_2W$, $M=620.40,\,P\bar{1},\,a=9.330(3),\,b=9.522(3),\,c=14.275(3)$ Å, $\alpha=$

89.13(3), $\beta = 83.66(3)$, $\gamma = 79.80(3)^{\circ}$, $V = 1240.5(5) \text{ Å}^3$, Z = 2, $d_{\text{calc}} = 1.661 \text{ Mg/m}^3$, $\mu = 4.846 \text{ mm}^{-1}$, T = 143 K. A pale brown block $(0.6 \times 0.3 \times 0.3 \text{ mm})$ was mounted in inert oil. 8349 intensities were measured (2Θ 6-50°) using Mo-Kα radiation on a Stoe STADI-4 diffractometer. After absorption correction (y-scans) 4383 were unique ($R_{\text{int}} = 0.0256$) and used for all calculations (program SHELXL-93). All hydrogen atoms (except rigid methyl groups) were refined with a riding model. The final $wR(F^2)$ was 0.052 with conventional R(F) 0.023 for 269 parameters and 90 restraints. Highest peak 640, hole -969 e/nm³.

R. Streubel, A. Ostrowski, S. Priemer, U. Rohde, J. Jeske, P. G.

[3] H. Wilkens, J. Jeske, P. G. Jones, R. Streubel, J. Chem. Soc., Chem. Commun. 1997, 2317-2318.

[4] R. Streubel, J. Jeske, P. G. Jones, R. Herbst-Irmer, Angew.

Chem. 1994, 106, 115-117; Angew. Chem. Int. Ed. Engl. 1994,

- 33, 80–82.
 [5] [5a] E. O. Fischer, H. J. Kollmeier, *Chem. Ber.* **1971**, *104*, 1339–1346. [5b] J. A. Connor, E. M. Jones, *J. Chem. Soc.* (*A*), **1971**, 1974-1979.
- R. Appel, A. Westerhaus, *Tetrahedron Lett.* **1981**, 22, 2159–2160.
- [7] R. Streubel, F. Ruthe, P. G. Jones, Eur. J. Inorg. Chem. 1998, 571 - 574.
- See: E. Breitmaier, W. Voelter, *Carbon-13 NMR Spectroscopy*, third ed., VCH, Weinheim, **1993**, p. 281. See: M. Witanowski, L. Stefaniak, G. A. Webb, *Ann. Rep. NMR*
- Spectrosc. (G.A. Webb, Ed.), Academic Press, London, 1981, Vol. 11B, p 310.
- [10] J. Mason, Multinuclear NMR, Plenum Press, New York, 1987.
- [11] Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-100855. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, UK-Cambridge CB2 1EZ [fax: int. code +44(1223)336-
- 033; E-mail: deposit@chemcrys.cam.ac.uk].

 [12] J. A. Connor, E. M. Jones, E. W. Randall, E. Rosenberg, J. Chem. Soc., Dalton Trans. 1972, 2419-2424.

[97288]

Dedicated to Professor Hans Bock on the occasion of his 70th

Jones, Eur. J. Inorg. Chem. 1998, 257–261.

[2] R. Streubel, H. Wilkens, A. Ostrowski, C. Neumann, F. Ruthe, P. G. Jones, Angew. Chem. 1997, 109, 1549–1550; Angew. Chem. Int. Ed. Eng. 1997, 36, 1492–1493.